Consulting, System Design, Production, **OEM Integration Services and more...**

SYS TEC, well known for its high quality
Consulting & Design Services and
OEM Integration Services design and production of customized more...

OEMable automation devices, Single and layout tools - combined with more • Integration of Single Board Computer Board Computer module subassemblies than 15 years of experience - guarantee subassemblies into target hardware and Rapid Development Kits accelerate high-quality hardware design in adherence • Customer-specific I/O and base boards

Do you require assistance in:

- selecting the optimal controller
- design or production of your end
- integration of a SYS TEC product into

With over 15 years of experience in • Semi-custom design based on design and assembly, our in-house layout SYS TEC off-the-shelf products and production enables us to offer cost- • Full custom design, customer-specific technical support and optional integration services to assist implementing our products into target applications.

to specified product requirements, • Board Support Packages, Software such as electromagnetic conformance, Drivers, Firmware usability and handling. Furthermore we • Start-up, Test, Validation provide complementary software services • Technical Support and products, such as a sophisticated and advanced implementation of the CANopen protocol or an industry proven

and products, such as a sophisticated • Quality Control, Enhanced EMI Protection, MTBF Life-Span Analysis IEC 61131-3 runtime kernel.

Custom Hardware Design

Custom Software Design

- Operating Systems
- Drivers, Board Support Package (BSP)
- CANopen and Ethernet Powerlink
- OPC and COM object servers
- programming environment
- Application Code Development

- Software Maintenance
- Technical Support

OEM Integration & Beyond...

cluding on-site support and consulting.

production and beyond.

Backed By In-House Production

SYS TEC is well equipped to produce your custom hardware, regardless of complexity. We offer both SMD and **Quality Assurance** SMD assembly of miniature 0402 and production inputs.

We measure our success by the success of microBGA components; and provides standard SYS TEC modules

- testing upon request

High product quality is only one facet of customer satisfaction. Accordingly, automated production line increases our an internal quality control program expert technical and economic aspects production capacity; handles advanced encompassing all material, labor and of the microcontroller and industrial PC market and its many product applications.

vide support for your product during its facilities, SYS TEC is now even better able • ISO 9001:2008 stages of embedded development: from their development cycle, from prototype • IPC-600A-F class 3 PCBs product specification to design to OEM and evaluation to OEM production. We • CE conformance offer the same flexibility in terms of • MTBF predictions delivery time and production volume • other conformance and standards quantities for custom-specific products

德国思泰电子有限公司北京代表处 SYS TEC electronic GmbH

北京市朝阳区十里堡甲3号城市广场A座都会国际大厦20层G室

电话 +86-10-51315760 传真 +86-10-51315761 邮箱 beijing@systec-electronic.com info@systec-electronic.com 主页 http://www.systec-electronic.cn www.systec-electronic.com

Am Windrad 2 08468 Heinsdorfergrund

phone +49 3765 38600-0 fax +49 3765 38600-4100

ECUcore-iMX35

System On Module

ECUcore-5484 ECUcore-1021 ECUcore-9G20 ECUcore-9263 ECUcore-1798 **ECUcore-EP3C** ECUcore-E660 ECUcore-1793

Module Overview

The PLCcore Concept

Based on the accumulated experience of numerous customer projects, the ECUcore series combines a state-of-the-art hardware design with integrated operating system and extended software support.

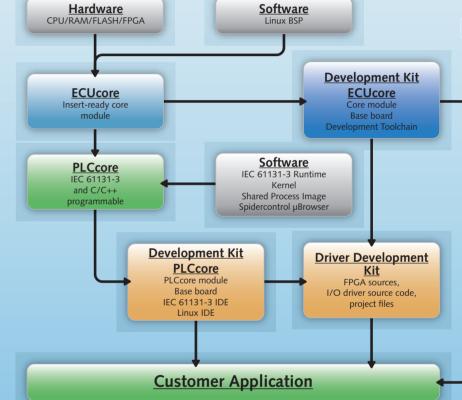
Integrated Development Environment

- Enhanced Eclipse-based integrated development environment (IDE)
- GNU C/C++ Toolchain
- Source- and assembly-level debugger
- Comprehensive user documentation in HTML and PDF

Middleware:

- CANopen® Protocol Stack Source Code
- Ethernet POWERLINK Protocol Stack Source Code

Feature Overview Interfaces														Board features								
	Controller	Frequency (internal)	RAM (default/ optional)	FLASH (default/ optional)	EEPROM	Ethernet	CAN	UART	USB		SPI/I ² C	optional memory expansion	Others	DMA	MMU	Watch- dog	Temperature Sensor	RTC	FPGA/PLD	Operating Temperature	Operating System	Programmable in
ECUcore-5484	Freescale MCF 5484 with ColdFire V4e Core	200MHz	64/128MB DDR-SDRAM	16/32MB (NOR)	32KB (SPI)	2x 10/100 Mbps	2	4	-		1/1	-	driver for dot-matrix display and 4x4 keypad	•	•	•	•	•	Lattice LFE2-6 or LFE2-20 MACH XO 640	-40°C +85°C	Linux eCos ^{*2}	IEC61131-3 ^{*4} , C/C++
ECUcore-1021	Freescale Dual-core Cortex®-A7	2x1,0GHz	1GB DDR3L-1600MT	128 MB QSPI (NOR)	-	up to 3x 10/100/1000 Mbps	4	9	2x host 1x device USB2.0 1x host USB3.0		1/1	SD*1 SDHC*1	2x PCIe, 1x SATA, 2x UCC, 4x I ² S/ASRC/ SPDIF, 1x SATA, Flex Timer, 1x GPIO, 1x ADC	•	•	•	•	•	-	-40°C +85°C	Linux	IEC61131-3 ^{*3} , C/C++
ECUcore-9G20	Atmel® AT91SAM 9G20, with ARM 926EJ-S Core	400MHz	32/64MB SDR-SDRAM	16/64MB (NOR)	-	10/100 Mbps	1	4	2x host 1 device USB2.0		1/1	MMC*1, SD*1	SSC	•	•	•	•	•	Lattice ECP2-6	-40°C +85°C	Linux	IEC61131-3 ^{*4} , C/C++
ECUcore-9263	Atmel® AT91SAM 9263, with ARM 926EJ-S Core	240MHz	64/32MB SDR-SDRAM	256 MB (NAND) 64/128MB (NOR)	32KB (SPI)	10/100 Mbps	1	3	2x host 1 device USB2.0		2/1	MMC, on-board Micro-SD card slot	SSC, AC97 CMOS/LVDS-TFT, Video-RAM, Touch controller	•	•	•	•	•	-	-40°C +85°C	Linux	IEC61131-3 ^{*4} , C/C++
ECUcore-1798	Infineon TC 1798 with TriCore V1.6 Core	300MHz	64MB SDR-SDRAM	64MB (NOR)	32KB (SPI)	10/100 Mbps	4	3	-		2	-	28x ADC, 135x GPIO, timer and counter units	•	•	•	•	•	-	-40°C +85°C	PxROS	C/C++
ECUcore-EP3C	Altera Nios II CPU on EP3C25F256I7N FPGA	50MHz oscillator	2MB SRAM	serial Flash for FPGA ST M25P80-VMN6P	32KB (SPI)	2x 10/100 Mbps openMAC and openHUB available as IP core	IP core	IP core	-		IP core	-	-	-	-	IP core	-	-	FPGA Altera Cyclon® III	-40°C +85°C	all Nios II compatible OS	C/C++
ECUcore-E660	Intel® Atom™ Processor E660T	1,3GHz	1/2GB DDR2	2GB (NAND) eMMC	64KB(SPI)	2x 10/100/1000 Mbps	1	4	6x host 1 device USB2.0		1/1	SD*1	2x SATA, 2x PCIe, HD-Audio	•	•	•	•	•	-	-40°C +85°C	Linux	IEC61131-3 ^{*4} , C/C++
ECUcore-1793	Infineon TC 1793 with TriCore V1.6 Core	270MHz	2MB SRAM	1MB (NOR) 4MB CPU intern	64KB(SPI)	-	2	2	-		3/-	-	44x ADC (12bit), MSC, MLI, GPTA, LTCA, CAPCOM6, GPT	•	-	•	•	•	-	-40°C +125°C	PxROS	IEC61131-3 ^{*3} , C/C++
ECUcore-iMX35	Freescale i.MX357 with ARM11 Core	532MHz	64MB	128MB (NOR)	32KB (SPI)	10/100 Mbps	2	3	1x host 1OTG		1/1	2x SD*1	LCD LVDS / parallel, 1024x1024 max 24bit Touchscreen over SPI, Audio (S/PDIF)	•	•	•	•	•	-	-40°C +85°C	Linux	IEC61131-3 ^{*4} , C/C++
ECUcore-5484 ECUco		re-1021	ECU	core-9G20	ECUcore-9263		EC	ECUcore-1798			ECUcore-EP3C				ECUcore-E660			ECUcore-1793			ECUcore-iMX35	


The PLCcore SOM is an insert-ready, OEM-able single board computer subassembly, coming with a state-of-the-art operating system and IEC 61131-3 runtime kernel preinstalled on the module. Performance-optimized 32-bit CPU core components, value-adding peripherals and the fully customizable I/O layer makes the PLCcore a truly generic platform for own control application developments.

What's special about it?

- No development licenses for PLCcore -based product design.
- No resale licenses when distributing PLCcore-based products.
- Insert-ready, low-EMI, 32-bit hardware platform with preinstalled productionready operating system and PLC runtime kernel.
- Supports simultaneous execution of OS-level and PLC-level user applications.
- Integrated Development Environment (IDE) for C/C++ and IEC 61131-3 application development included.
- Seamlessly integrated CiA®302/ CiA®314 compliant CANopen®
- The open and customizable I/O layer concept allows for adaptation to different application carrier boards.
- Comprehensive starter kit packages accelerate your PLCcore-based application development.

PLCcore Main Features

- PLC kernel supports full set of IEC 61131-3 standard function blocks.
- Transparent process data communication through CANopen® network variables.
- CiA® 302 CANopen® manager bootup procedure, automatic remote node configuration from DCF files.
- Shared process image technology for easy inter-process communication and data sharing between OS-level and PLC user applications.
- Linux operating system with pre-installed webserver, FTP server, Telnet and Login
- Complete I/O driver source code and reference documentation provided with the Driver Development Kit.
- Target Visualization (optional)

- Ethernet or CANopen®.
- Comprehensive vendor-specific function If you want to create tangible block library, including:
- CiA® 302 and CiA® 314 compliant CANopen® functions for PDO/SDO data communication, synchronized management and error control
- Serial I/O and string processing
- Ethernet communication
- Non-volatile memory access
- PTO/PWM, counter and encoder
- Real time clock (RTC)
- Industrial PID controller

• Program download and debugging via When to consider starting with a PLCcore-based design?

- solutions under extreme cost and time
- If you want to boost a product idea yet lacking reliable market forecasts.
- process data transmission, network If starting a conventional product design cycle does not seem to be feasible.
- CANopen® slave and manager mode If you want to make concept studies or prototyping in preparation to a fullcustom product design.
 - If your product series allow for small to medium quantity only.

